sábado, 10 de noviembre de 2018

Mensajes amables de fin de semana: la existencia de algunos agujeros negros supermasivos puede ser debido al choque entre dos galaxias



Estimad@s Clientes y/o amantes del LEAN:

Estos días ha aparecido una de esas noticias que a mí me impactan, y además, es fruto de una observación directa: la existencia de algunos agujeros negros supermasivos puede ser debido al choque entre dos galaxias
Pero si ya de por sí la noticia es impresionante, para mí lo es más el hecho de que esta conclusión ha sido posible gracias a la observación en frecuencias de la luz, Rayos X e infrarrojos
Por otro lado, decir que como resultado de este choque se deberían detectar ondas gravitatorias en el LIGO, esa maravilla de la ciencia que acaba de empezar su vida  
Ahí van los links que más me han gustado sobre este tema tan apasionante

Científicos descubren relación entre el origen de las galaxias y la creación de agujeros negros
La investigación resalta que el origen de cierta cantidad de agujeros negros supermasivos estarían relacionados al choque de galaxias.
https://www.fayerwayer.com/2018/11/galaxias-agujeros-negros/




Sabemos que hay un agujero negro supermasivo en el centro de la Vía Láctea. Además del perturbador hecho de que está en nuestro vecindario espacial, no conocemos mucho de cómo llegó ahí o cómo se creó. De hecho, es algo que todavía guarda cierto misterio alrededor de esos agujeros negros de tal tamaño en galaxias como la nuestra.
Un equipo científico internacional entre los que se incluyen investigadores chilenos acaba de descubrir algo revelador sobre este tema. Según el grupo, la existencia de los agujeros negros supermasivos se debería a un fenómeno entre galaxias. Más específicamente: el brutal choque entre dos de ellas.
El documento publicado en Nature lanzó la conclusión después de tomar 20 años de observaciones de telescopios como el Hubble o el Keck y el observatorio de rayos-X Neil Gehrels Swift.
El astrónomo del Instituto de Astrofísica de la Universidad Católica, Ezequiel Treister, explicó en qué consiste el estudio:
Lo que descubrimos es que casi el 20% de los agujeros negros en rápido crecimiento (conocidos como AGN) están asociados a las últimas etapas del proceso de choque de galaxias. Es decir, un poco antes que se fusionen y formen un solo y colosal agujero negro".
En otras palabras, se cree que cierta cantidad de agujeros negros supermasivos debe su existencia al choque de dos galaxias. Esto se daría al unirse los dos núcleos galácticos en un solo gran agujero negro.
El proceso se daría como en la siguiente simulación hecha por computadora. Durante tres mil millones de años, las dos galaxias se acercarían y chocarían para unirse en un solo elemento. Mientras tanto, se compara con una toma real del telescopio de rayos-x Swift-BAT.



                                                    https://youtu.be/Cm5C8mWWRIA


¿Qué significa esto?
Treister resalta las grandes incógnitas que esta investigación está tratando de resolver:
“Gracias a este trabajo hoy estamos más cerca de resolver dos grandes enigmas de la astrofísica: cómo se formaron las galaxias y cómo crecen los agujeros negros supermasivos que viven en el centro de las mismas, y aún más importante… el por qué ambos procesos están conectados".
Este estudio es muy útil para reconocer qué ocurrirá en un futuro para galaxias como la nuestra. Ya conocíamos que la Vía Láctea chocará en un futuro con Andrómeda. Por lo tanto, podremos esperar que se de el mismo proceso de la simulación que acabamos de ver.
La investigación concluye que los agujeros negros oscurecidos, es decir, aquellos que están cubiertos de material como polvo y gas producto de la fusión galáctica, tienen una mayor probabilidad de participar de este tipo de dinámica. “El choque de galaxias es un mecanismo clave para obscurecer estos procesos”, afirmó Claudio Ricci, astrónomo del Núcleo de Astronomía de la Universidad Diego Portales y también parte del equipo de trabajo.
Ahora el objetivo es lograr entender cómo es que se produce la alimentación y crecimiento de estos agujeros negros durante el proceso de choque de dos galaxias, y cómo se produce la interacción con las galaxias que las hospedan.
Astronomers Unveil Growing Black Holes in Colliding Galaxies
Peering through thick walls of gas and dust surrounding the messy cores of merging galaxies, astronomers are getting their best view yet of close pairs of supermassive black holes as they march toward coalescence into mega black holes.
A team of researchers led by Michael Koss of Eureka Scientific Inc., in Kirkland, Washington, performed the largest survey of the cores of nearby galaxies in near-infrared light, using high-resolution images taken by NASA's Hubble Space Telescope and the W. M. Keck Observatory in Hawaii.
The Hubble observations represent over 20 years' worth of snapshots from its vast archive.




These images reveal the final stage of a union between a pair of galactic nuclei in the messy cores of colliding galaxies.
The image at left, taken by Hubble's Wide Field Camera 3, shows the merging galaxy NGC 6240. A close-up of the two brilliant cores of this galactic union is shown at right.
This view, taken in infrared light, pierces the dense cloud of dust and gas encasing the two colliding galaxies and uncovers the active cores. The hefty black holes in these cores are growing quickly as they feast on gas kicked up by the galaxy merger. The black holes' speedy growth occurs during the last 10 million to 20 million years of the merger.
Credits: NASA, ESA, and M. Koss (Eureka Scientific, Inc.)
"Seeing the pairs of merging galaxy nuclei associated with these huge black holes so close together was pretty amazing," Koss said. "In our study, we see two galaxy nuclei right when the images were taken. You can't argue with it; it's a very 'clean' result, which doesn't rely on interpretation."
The images also provide a close-up preview of a phenomenon that must have been more common in the early universe, when galaxy mergers were more frequent. When galaxies collide, their monster black holes can unleash powerful energy in the form of gravitational waves, the kind of ripples in space-time that were just recently detected by ground-breaking experiments.
The new study also offers a preview of what will likely happen in our own cosmic backyard, in several billion years, when our Milky Way combines with the neighboring Andromeda galaxy and their respective central black holes smash together.
"Computer simulations of galaxy smashups show us that black holes grow fastest during the final stages of mergers, near the time when the black holes interact, and that's what we have found in our survey," said study team member Laura Blecha of the University of Florida, in Gainesville. "The fact that black holes grow faster and faster as mergers progress tells us galaxy encounters are really important for our understanding of how these objects got to be so monstrously big."
A galaxy merger is a slow process lasting more than a billion years as two galaxies, under the inexorable pull of gravity, dance toward each other before finally joining together. Simulations reveal that galaxies kick up plenty of gas and dust as they undergo this slow-motion train wreck.




Images of four other colliding galaxies, along with close-up views of their coalescing nuclei in the bright cores, are shown beneath the Hubble snapshots of NGC 6240. The left image of each pair, showing the merging galaxies, was taken by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS).
The right image, showing the bright cores, was taken in near-infrared light by the W. M. Keck Observatory in Hawaii, using adaptive optics to sharpen the view. The nuclei in each of the Hubble and Keck Observatory infrared photos are only about 3,000 light-years apart — a near-embrace in cosmic terms.
If there are pairs of black holes, they will likely merge within the next 10 million years to form a more massive black hole. These observations are part of the largest-ever survey of the cores of nearby galaxies using high-resolution images in near-infrared light taken by the Hubble and Keck observatories. The survey galaxies' average distance is 330 million light-years from Earth.
Credits: NASA, ESA, and M. Koss (Eureka Scientific, Inc.); W. M. Keck Observatory; Panoramic Survey Telescope and Rapid Response System (Pan-STARRS)
The ejected material often forms a thick curtain around the centers of the coalescing galaxies, shielding them from view in visible light. Some of the material also falls onto the black holes at the cores of the merging galaxies. The black holes grow at a fast clip as they engorge themselves with their cosmic food, and, being messy eaters, they cause the infalling gas to blaze brightly. This speedy growth occurs during the last 10 million to 20 million years of the union. The Hubble and Keck Observatory images captured close-up views of this final stage, when the bulked-up black holes are only about 3,000 light-years apart — a near-embrace in cosmic terms.
It's not easy to find galaxy nuclei so close together. Most prior observations of colliding galaxies have caught the coalescing black holes at earlier stages when they were about 10 times farther away. The late stage of the merger process is so elusive because the interacting galaxies are encased in dense dust and gas and require high-resolution observations in infrared light that can see through the clouds and pinpoint the locations of the two merging nuclei.
The team first searched for visually obscured, active black holes by sifting through 10 years' worth of X-ray data from the Burst Alert Telescope (BAT) aboard NASA's Neil Gehrels Swift Telescope, a high-energy space observatory. "Gas falling onto the black holes emits X-rays, and the brightness of the X-rays tells you how quickly the black hole is growing," Koss explained. "I didn't know if we would find hidden mergers, but we suspected, based on computer simulations, that they would be in heavily shrouded galaxies.Therefore we tried to peer through the dust with the sharpest images possible, in hopes of finding coalescing black holes."
The researchers combed through the Hubble archive, identifying those merging galaxies they spotted in the X-ray data. They then used the Keck Observatory's super-sharp, near-infrared vision to observe a larger sample of the X-ray-producing black holes not found in the Hubble archive.
"People had conducted studies to look for these close interacting black holes before, but what really enabled this particular study were the X-rays that can break through the cocoon of dust," Koss said. "We also looked a bit farther in the universe so that we could survey a larger volume of space, giving us a greater chance of finding more luminous, rapidly growing black holes."
The team targeted galaxies with an average distance of 330 million light-years from Earth. Many of the galaxies are similar in size to the Milky Way and Andromeda galaxies. The team analyzed 96 galaxies from the Keck Observatory and 385 galaxies from the Hubble archive found in 38 different Hubble observation programs. The sample galaxies are representative of what astronomers would find by conducting an all-sky survey.
To verify their results, Koss's team compared the survey galaxies with 176 other galaxies from the Hubble archive that lack actively growing black holes. The comparison confirmed that the luminous cores found in the researchers' census of dusty interacting galaxies are indeed a signature of rapidly growing black-hole pairs headed for a collision.
When the two supermassive black holes in each of these systems finally come together in millions of years, their encounters will produce strong gravitational waves. Gravitational waves produced by the collision of two stellar-mass black holes have already been detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). Observatories such as the planned NASA/ESA space-based Laser Interferometer Space Antenna (LISA) will be able to detect the lower-frequency gravitational waves from supermassive black-hole mergers, which are a million times more massive than those detected by LIGO.
Future infrared telescopes, such as NASA's planned James Webb Space Telescope and a new generation of giant ground-based telescopes, will provide an even better probe of dusty galaxy collisions by measuring the masses, growth rate, and dynamics of close black-hole pairs. The Webb telescope may also be able to look in mid-infrared light to uncover more galaxy interactions so encased in thick gas and dust that even near-infrared light cannot penetrate them.
The team's results will appear online in the Nov. 7, 2018, issue of the journal Nature.
The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Maryland
410-338-4493 / 410-338-4514
dweaver@stsci.edu
 / villard@stsci.edu
Michael Koss
Eureka Scientific Inc., Kirkland, Washington
Michael.Koss@eurekasci.com
Last Updated: Nov. 7, 2018
Editor: Karl Hille

Por último, ahí van unos posts que he dedicado en mi blog “Historias del LEAN” sobre este tema:

Mensajes amables de fin de semana: primera detección triple de una onda gravitacional:

Las ondas gravitacionales detectadas por el LIGO y el VIRGO podrían ser originadas por el choque de dos agujeros gusano, en vez del de dos agujeros negros...!!!!todo depende del eco!!!!:


Como siempre, he incluido estas reflexiones en mi blog “Historias del LEAN”:

Que disfrutéis cada hora del fin de semana
Un cordial saludo
Alvaro Ballesteros






No hay comentarios:

Publicar un comentario